
Problem Set
Linear Algebra

Paulo Fagandini

1. Show that the sets V1 = {0Rn} and V2 = Rn are vector subspace of Rn.

2. Let V = {X ∈ Rn|Xn = 0}, show that V is a vector subspace of Rn.

3. Let V1 and V2 be both vector subspace of Rn, show that V1 ∩ V2 is also a vector subspace of Rn.

Solution: If V1 and V2 are v.s. then for any v̂1, ṽ1 ∈ V1, v̂1 + λṽ1 ∈ V1, and for any v̂2, ṽ2 ∈ V2,
v̂2 + λṽ2 ∈ V2, for any λ ∈ R. Take any v̂, ṽ ∈ V1 ∩ V2, and λ ∈ R, then v = v̂+ λṽ. If v̂, ṽ ∈ V1 ∩ V2

then v̂, ṽ ∈ V1, so v ∈ V1 because V1 is v.s. Do the same for V2. Then, v ∈ V1 ∩ V2, so V1 ∩ V2 is a
v.s.

4. Let X0 ∈ Rn, and let VX0
= {αX0|α ∈ R}. Show that VX0

is a vector subspace Rn.

5. Let X0, X1 ∈ Rn. Show that VX0∩VX1 6= {0Rn} if and only if there is a scalar λ 6= 0 such that X0 = λX1.

6. Let Xt
1 = (1, 2, 3) and Xt

2 = (4, 5, 6), check if X = (10, 11, 12) is an element of L{X1, X2}.

Solution: If X ∈ L{X1, X2}, there there are α and β in R such that

α

 1
2
3

+ β

 4
5
6

 =

 10
11
12


This leaves the system:

a+ 4β = 10

2α+ 5β = 11

3α+ 6β = 12

Replacing the first one in the other equations:

α+ β = 1

2α+ 2β = 2

So basically, for any α, β such that α + β = 1 the condition is satisfied. Replace back in the first
equation. α+ 4β = 10, we get now 1 + 3β = 10 or β = 3, and therefore α = −2.

7. Show that two vector sub space V1, V2 of Rn it holds that dim(V1 ∩ V2) ≤ min{dim(V1), dim(V2)}
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8. Let the vector subspace V1 = {X ∈ Rn|Xn = 0} of Rn. Find dim(V1). Analogously do the same for the
vector subspace V2 = {X ∈ Rn|

∑n
i=1 aiXi = 0}, given some αis.

9. Show that for any X ∈ Rn, 0 ⊥ X. Show also that if X ∈ Rn is such that Z ⊥ X, for any X ∈ Rn, then
Z = 0.

Solution:
First part:

0 ⊥ X ⇔ 0 ·X = 0

0 ·X =
∑

0× xi = 0

Second part:

Z ·X =
∑

zi × xi = 0

If this is true for any Rn, then in particular is true for the vectors of the canonical basis of Rn. Let
Ci represent each of these vectors, with 1 in the ith component, and 0 everywhere else. The inner
product would be:

Z · Ci = zi × ci = zi × 1 = zi

Doing the same for every vector in the canonical basis, we get that zi = 0 for every i, and therefore
Z = 0.

10. Show that if X ⊥ Xi, with i = 1, 2, ..., k, then X ⊥ Y , for any Y ∈ L({X1, X2, ..., Xk}).

11. Show that X̂ = X
||X|| is a unit vector, for X 6= 0.

12. Consider the family of vectors B = {e1, e2, ..., en} ⊆ Rn where ei = (0, ..., 0, 1, 0, ..., 0). Show that B is
a family of unit vector that are mutually perpendicular. Show also that for any X ∈ Rn, it holds that∑n

j=1(X · ej)ej .

13. Show that if X,Y are two perpendicular vectors, different from zero, then X and Y are linearly inde-
pendent.

Solution: Let X and Y be linearly dependent, then ∃ a, b 6= 0 such that aX+ bY = 0 or X = −b
a Y .

X · Y =
∑

xi × yi =
∑ −b

a
yi × yi =

−b

a

∑
y2i

But, as Y 6= 0, then at least for one i, y2i 6= 0, and therefore X · Y 6= 0, so the vectors are not
perpendicular.

14. Let X1, X2, ..., Xn be non zero vectors and orthogonal among them, show that {X1, X2, ..., XN} as a
basis of Rn. If further, we assume that these vectors are unit vectors, show then that for any X ∈ Rn it
holds that X =

∑n
j=1(X ·Xj)xj .

15. Show that the matrices, with the sum and scalar multiplication, is a vector subspace.
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16. Given the matrix

A =

 α 0 0
0 1 0
0 0 4


Show that A is invertible if and only if α 6= 0.

Solution:

det(A) = 4α

(A invertible ⇒ α 6= 0) We know that A is invertible if and only if det(A) 6= 0, so given that
det(A) = 4α, we know that 4α 6= 0, and therefore α 6= 0.
(α 6= 0 ⇒ A invertible) Again, this is equivalent to A not invertible ⇒ α = 0. We know that
A not invertible if and only if det(A) = 0, therefore 4α = 0, or α = 0.

17. Show that, for a given matrix A, the rank of A is the same that the rank of its transpose.

18. Let A be an upper triangular matrix. Show that its rank coincides with the number of non zero elements
that lie on its diagonal.

19. Let Y t = (1, 2, 3, 4), Xt = (1, 1, 1, 1), Xt
2 = (0, 1, 0, 1) in R4. Find projV (Y ) with V = L{X1, X2}.

20. Let

A =

 1 2 3
2 β 4
0 3 α


Find conditions over α and β such that A is invertible.

Solution: det(A) = βα+0+18−0−12−4α = αβ−4α+6. What is necessary is that det(A) 6= 0,
therefore αβ − 4α + 6 6= 0. If αβ − 4α + 6 = 0, then α(4 − β) = 6 so for A to be invertible, it is
necessary that α 6= 6

4−β or that β = 4.

21. Let A ∈ Rn×n, be such that its eigenvalues are different between them, and also different from zero. Let
V the matrix composed with the eigenvectors, that is first column of V is the eigenvector associated to
the first eigenvalue.
(a) Show that V −1AV = D(λ), being D(λ) the diagonal matrix whose elements are the eigenvalues of

A.
(b) Show that A is invertible if and only if all its eigenvalues are different from zero.
(c) Show that for any n ∈ N, it holds that An = V D(λn)V −1, where D(λn) is the diagonal matrix with

the eigenvalues of A raised to the power of n.

22. Let A ∈ Rn a diagonal matrix with values λi, i = 1, ..., n. Show that det(A) =
∏n

i=1 λi.

23. Show that the determinant of an upper triangular matrix is equal to the product of the elements on its
diagonal.

24. Consider the following matrix

A =

 1 −1 0
−1 2 −1
0 −1 1


.
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(a) Find its eigenvalues and eigenvectors.

Solution: Find det(A− λI) to solve the characteristic equation:

(A− λI) =

 1− λ −1 0
−1 2− λ −1
0 −1 1− λ


det(A− λI) = (1− λ)2(2− λ)− 2(1− λ)

= (1− λ) [(1− λ)(2− λ)− 2]

= (1− λ)
[
2− 3λ+ λ2 − 2

]
= (1− λ)

[
−3λ+ λ2

]
= (1− λ)λ [−3 + λ]

So for the determinant to be zero, λ = 0, or λ = 1, or λ = 3. Let’s find the eigenvectors
associated to those eigenvalues.
Start with λ = 0

 1 −1 0
−1 2 −1
0 −1 1

x1

x2

x3

 =

0
0
0


We obtain:

x1 − x2 = 0

−x1 + x2 − x3 = 0

−x2 + x3 = 0

From where we obtain x1 = x2 = x3, so the vector (1, 1, 1)T is the eigenvector associated to
λ = 0, in particular for k = 1. Now lets look for the eigenvector associated to the eigenvalue
λ = 1

We obtain:

x1 − x2 = x1

−x1 + x2 − x3 = x2

−x2 + x3 = x3

From where we get x2 = 0 from the first equation, x1 = −x3. Then the vector (1, 0,−1)T

would be an eigenvector associated to λ = 1. Finally, when λ = 3 we obtain:

x1 − x2 = 3x1

−x1 + x2 − x3 = 3x2

−x2 + x3 = 3x3

Which leads x2 = −2x1 = −2x3, so x1 = x3. Then the vector (1,−2, 1)T would be the final
eigen vector associated to the eigenvalue λ = 3.

(b) Find A5
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Solution: Having all the eigenvalues and eigenvectors we can write the matrix decomposition:

A =

 1 −1 0
−1 2 −1
0 −1 1

 =

1 1 1
1 0 −2
1 −1 1

0 0 0
0 1 0
0 0 3

 1
3

1
3

1
3

1
2 0 − 1

2
1
6 − 1

3
1
6


And given that A = V DV −1.

A5 =

 1 −1 0
−1 2 −1
0 −1 1

 =

1 1 1
1 0 −2
1 −1 1

0 0 0
0 15 0
0 0 35

 1
3

1
3

1
3

1
2 0 − 1

2
1
6 − 1

3
1
6


=

1 1 1
1 0 −2
1 −1 1

0 0 0
0 1 0
0 0 243

 1
3

1
3

1
3

1
2 0 − 1

2
1
6 − 1

3
1
6


=

 41 −81 40
−81 162 −81
40 −81 41



25. Let A be a positive semidifinite matrix. Show that there is a matrix R such that A can be written as
A = RtR.

Solution: As A is positive semidefinite, then we know there is a diagonal matrix with its eigenvalues,
all positive, and an orthogonal matrix V such that A = V DV t. Define H = D(

√
λ), then A =

V HHV t, but as H is also diagonal, H = Ht, so A = V HHtV t = V H(V H)t. Let R = V H.

26. Show that if f : Rn → Rm is linear, then f(0Rn) = 0Rm .

27. Show that if f, g : Rn → Rn are linear functions, then f + g is also linear.

Solution: f and g linear, then for any X,Y ∈ Rn f(X+Y ) = f(X)+f(Y ), g(X+Y ) = g(X)+g(Y ),
f(αX) = αf(X), and g(αX) = αg(X) for α ∈ R.
Then, [f+g](X+Y ) = f(X+Y )+g(X+Y ) = f(X)+f(Y )+g(X)+g(Y ) = [f+g](X)+[f+g](Y ).
Also, [f + g](αX) = f(αX) + g(αX) = αf(X) + αg(X) = α(f(X) + g(X)) = α[f + g](X)

Concluding, f + g is linear.

28. Show that if f, g : Rn → Rn are linear functions, then f ◦g is also linear. Indeed, show that [f ◦g] = [f ][g].
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